Developing and applying new theoretical and computational methods to study complex condensed phase systems

Gregory A. Voth

Gregory A. Voth
Haig P. Papazian Distinguished Service Professor
Department of Chemistry
Google Scholar Page

The research in the Voth Group involves theoretical and computer simulation studies of biomolecular, condensed phase, quantum mechanical, and materials systems. One of our goals is to develop new theory to describe such problems across multiple, connected length and time scales. Another related goal is to develop and apply new computational methods, tied to our multiscale theory, that can explain and predict complex phenomena occurring in these systems. Our methods are developed, for example, to probe protein-protein self-assembly, membrane-protein interactions, biomolecular and liquid state charge transport, complex liquids, self-assembly, and energy conversion materials. Our research is also often carried out in close collaboration with leading experimentalists from around the world. 

Material for Download

RAPTOR®  Charge Transport Simulation Software

A Modern Perspective on the Hydrated Excess Proton (aka "Hydronium") 

Multi-scale Coarse-graining (MS-CG) Force Matching (FM) code is now publicly available for download 

OpenMSCG Package

Research News

Density Functional Theory-Based Quantum Mechanics/Coarse-Grained Molecular Mechanics: Theory and Implementation

Quantum mechanics/molecular mechanics (QM/MM) is a standard computational tool for describing chemical reactivity in systems with many degrees of freedom, including polymers, enzymes, and reacting molecules in complex solvents. However, QM/MM is less suitable for systems with complex MM dynamics due to associated long relaxation times, the high computational cost of QM energy evaluations, and expensive long-range electrostatics. Recently, a systematic coarse graining of the MM part was proposed to overcome these QM/MM limitations in the form of the quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM) approach. Herein, we recast QM/CG-MM in the density functional theory formalism and, by employing the force-matching variational principle, assess the method performance for the two model systems: QM CCl4 in the MM CCl4 liquid and the reaction of tert-butyl hypochlorite with the benzyl radical in the MM CCl4 solvent. We find that density functional theory (DFT)-QM/CG-MM accurately reproduces DFT-QM/MM radial distribution functions and three-body correlations between the QM and CG-MM subsystems. The free-energy profile of the reaction is also described well, with an error <1–2 kcal/mol. DFT-QM/CG-MM is a general, systematic, and computationally efficient approach to include chemical reactivity in coarse-grained molecular models.

Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics

Prevalent resistance to inhibitors that target the influenza A M2 proton channel has necessitated a continued drug design effort, supported by a sustained study of the mechanism of channel function and inhibition. Recent high-resolution X-ray crystal structures present the first opportunity to see how the adamantyl amine class of inhibitors bind to M2 and disrupt and interact with the channel’s water network, providing insight into the critical properties that enable their effective inhibition in wild-type M2. In this work, we examine the hypothesis that these drugs act primarily as mechanism-based inhibitors by comparing hydrated excess proton stabilization during proton transport in M2 with the interactions revealed in the crystal structures, using the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD, unlike classical molecular dynamics, models the hydrated proton (hydronium-like cation) as a dynamic excess charge defect and allows bonds to break and form, capturing the intricate interactions between the hydrated excess proton, protein atoms, and water. Through this, we show that the ammonium group of the inhibitors is effectively positioned to take advantage of the channel’s natural ability to stabilize an excess protonic charge and act as a hydronium mimic. Additionally, we show that the channel is especially stable in the drug binding region, highlighting the importance of this property for binding the adamantane group. Finally, we characterize an additional hinge point near Val27, which dynamically responds to charge and inhibitor binding. Altogether, this work further illuminates a dynamic understanding of the mechanism of drug inhibition in M2, grounded in the fundamental properties that enable the channel to transport and stabilize excess protons, with critical implications for future drug design efforts.

Molecular Origins of the Barriers to Proton Transport in Acidic Aqueous Solution

The self-consistent iterative multistate empirical valence bond (SCI-MS-EVB) method is used to analyze the structure, thermodynamics, and dynamics of hydrochloric acid solutions. The reorientation time scales of irreversible proton transport are elucidated by simulating 0.43, 0.85, 1.68, and 3.26 M HCl solutions at 270, 285, 300, 315, and 330 K. The results indicate increased counterion pairing with increasing concentration, which manifests itself via reduced hydronium oxygen–chloride (O*–Cl) structuring in the radial distribution functions. Increasing ionic concentration also reduces the diffusion of the hydrated excess protons, principally by reducing the contribution of the Grotthuss proton hopping (shuttling) mechanism to the overall diffusion process. In agreement with prior experimental findings, a decrease in the activation energy of reorientation time scales was also observed, which is explicitly explained by using activated rate theory and an energy–entropy decomposition of the state-averaged radial distribution functions. These results provide atomistic verification of suggestions from recent two-dimensional infrared spectroscopy experiments that chloride anions (as opposed to hydrated excess protons) create entropic barriers to proton transport. 

Density Functional Theory-Based Quantum Mechanics/Coarse-Grained Molecular Mechanics: Theory and Implementation

Quantum mechanics/molecular mechanics (QM/MM) is a standard computational tool for describing chemical reactivity in systems with many degrees of freedom, including polymers, enzymes, and reacting molecules in complex solvents. However, QM/MM is less suitable for systems with complex MM dynamics due to associated long relaxation times, the high computational cost of QM energy evaluations, and expensive long-range electrostatics. Recently, a systematic coarse-graining of the MM part was proposed to overcome these QM/MM limitations in the form of the quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM) approach. Herein, we recast QM/CG-MM in the density functional theory formalism and, by employing the force-matching variational principle, assess the method performance for the two model systems: QM CCl4 in the MM CCl4 liquid and the reaction of tert-butyl hypochlorite with the benzyl radical in the MM CCl4 solvent. We find that density functional theory (DFT)-QM/CG-MM accurately reproduces DFT-QM/MM radial distribution functions and three-body correlations between the QM and CG-MM subsystems. The free-energy profile of the reaction is also described well, with an error <1–2 kcal/mol. DFT-QM/CG-MM is a general, systematic, and computationally efficient approach to include chemical reactivity in coarse-grained molecular models.

Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics

Prevalent resistance to inhibitors that target the influenza A M2 proton channel has necessitated a continued drug design effort, supported by a sustained study of the mechanism of channel function and inhibition. Recent high-resolution X-ray crystal structures present the first opportunity to see how the adamantyl amine class of inhibitors bind to M2 and disrupt and interact with the channel’s water network, providing insight into the critical properties that enable their effective inhibition in wild-type M2. In this work, we examine the hypothesis that these drugs act primarily as mechanism-based inhibitors by comparing hydrated excess proton stabilization during proton transport in M2 with the interactions revealed in the crystal structures, using the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD, unlike classical molecular dynamics, models the hydrated proton (hydronium-like cation) as a dynamic excess charge defect and allows bonds to break and form, capturing the intricate interactions between the hydrated excess proton, protein atoms, and water. Through this, we show that the ammonium group of the inhibitors is effectively positioned to take advantage of the channel’s natural ability to stabilize an excess protonic charge and act as a hydronium mimic. Additionally, we show that the channel is especially stable in the drug binding region, highlighting the importance of this property for binding the adamantane group. Finally, we characterize an additional hinge point near Val27, which dynamically responds to charge and inhibitor binding. Altogether, this work further illuminates a dynamic understanding of the mechanism of drug inhibition in M2, grounded in the fundamental properties that enable the channel to transport and stabilize excess protons, with critical implications for future drug design efforts.

Molecular Origins of the Barriers to Proton Transport in Acidic Aqueous Solutions

The self-consistent iterative multistate empirical valence bond (SCI-MS-EVB) method is used to analyze the structure, thermodynamics, and dynamics of hydrochloric acid solutions. The reorientation time scales of irreversible proton transport are elucidated by simulating 0.43, 0.85, 1.68, and 3.26 M HCl solutions at 270, 285, 300, 315, and 330 K. The results indicate increased counterion pairing with increasing concentration, which manifests itself via a reduced hydronium oxygen–chloride (O*–Cl) structuring in the radial distribution functions. Increasing ionic concentration also reduces the diffusion of the hydrated excess protons, principally by reducing the contribution of the Grotthuss proton hopping (shuttling) mechanism to the overall diffusion process. In agreement with prior experimental findings, a decrease in the activation energy of reorientation time scales was also observed, which is explicitly explained by using activated rate theory and an energy–entropy decomposition of the state-averaged radial distribution functions. These results provide atomistic verification of suggestions from recent two-dimensional infrared spectroscopy experiments that chloride anions (as opposed to hydrated excess protons) create entropic barriers to proton transport.

Interfacial Solvation and Slow Transport of Hydrated Excess Protons in Non-Ionic Reverse Micelles

This work employs molecular dynamics simulations to investigate the solvation and transport properties of hydrated excess protons (with a hydronium-like core structure) in non-ionic Igepal CO-520 reverse micelles of various sizes in a non-polar solvent. Multiscale Reactive Molecular Dynamics (MS-RMD) simulations were used to describe vehicular and hopping diffusion during the proton transport process. As detailed herein, an excess proton shows a marked tendency to localize in the interfacial region of micellar water pools. Slow proton transport was observed which becomes faster with increasing micellar size. Further analysis reveals that the slow diffusion of an excess proton is a combined result of slow water diffusion and the low proton hopping rate. This study also confirms that a low proton hopping rate in reverse micelles stems from the interfacial solvation of hydrated excess protons and the immobilization of interfacial water. The low water density in the interfacial region makes it difficult to form a complete hydrogen bond network near the hydrated excess proton, and therefore locks in the orientation of hydrated proton cations. The immobilization of the interfacial water also slows the relaxation of the overall hydrogen bond network.

Reactive Coarse-Grained Molecular Dynamics

Coarse-grained (CG) models have allowed for the study of long time and length scale properties of a variety of systems. However, when a system undergoes chemical reactions, current CG models are not able to capture this behavior because of their fixed bonding topology. In order to develop CG models capable of taking into account such chemical changes, a model must be able to adapt its bonding topology and CG site–site interactions to switch between multiple bonding structures (i.e., topologies). This challenge particularly impacts “bottom-up” CG models developed from the fundamental underlying atomistic-scale interactions. In this paper, a reactive coarse-grained (RCG) method is developed which utilizes all-atom (AA) data to create a CG model able to represent chemical reactions by undergoing changes in bonding topology. As an example, the RCG method was applied to a model of SN2 reactions of 1-chlorobutane with a chloride ion and 1-iodobutane with an iodide ion in a methanol solvent. An asymmetric reaction was also modeled by incorporating a constant energy offset to the 1-iodobutane model. In each case, the calculated CG potential of mean force (PMF) results in good agreement with the fully AA PMF for the reactions.

Water-Assisted Proton Transport in Confined Nanochannels

 Hydrated excess protons under hydrophobic confinement are a critical component of charge transport behavior and reactivity in nanoporous materials and biomolecular systems. Herein, excess proton confinement effects are computationally investigated for sub-2 nm hydrophobic nanopores by varying the diameters (d = 0.81, 0.95, 1.09, 1.22, 1.36, 1.63, and 1.90 nm), lengths (l ∼3 and ∼5 nm), curvature, and chirality of cylindrical carbon nanotube (CNT) nanopores. CNTs with a combination of different diameter segments are also explored. The spatial distribution of water molecules under confinement is diameter-dependent; however, proton solvation and transport are consistently found to occur in the water layer adjacent to the pore wall, showing an “amphiphilic” character of the hydrated excess proton hydronium-like structure. The proton transport free energy barrier also decreases significantly as the nanopore diameter increases and proton transport becomes almost barrierless in the d > 1 nm nanopores. Among the nanopores studied, the Zundel cation (H5O2+) is populated only in the d = 0.95 nm CNT (7,7) nanopore. The presence of the hydrated excess proton and K+ inside the CNT (7,7) nanopore induces a water density increase by 40 and 20%, respectively. The K+ transport through CNT nanopores is also consistently higher in the free energy barrier than proton transport. Interestingly, the evolution of excess protonic charge defect distribution reveals a “frozen” single water wire configuration in the d = 0.81 nm CNT (6,6) nanopore (or segment), through which hydrated excess protons can only shuttle via the Grotthuss mechanism. Vehicular diffusion becomes relevant to proton transport in the “flat” free energy regions and in the wider nanopores, where protons do not primarily shuttle in the axial direction

What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air–Water Interface?

Molecular dynamics simulations and free energy sampling are employed in this work to investigate the surface affinity of the hydrated excess proton with two definitions of the interface: The Gibbs dividing interface (GDI) and the Willard–Chandler interface (WCI). Both the multistate empirical valence bond (MS-EVB) reactive molecular dynamics method and the density functional theory-based ab initio molecular dynamics (AIMD) were used to describe the hydrated excess proton species, including “vehicular” (standard diffusion) transport and (Grotthuss) proton hopping transport and associated structures of the hydrated excess proton net positive charge defect. The excess proton is found to exhibit a similar trend and quantitative free energy behavior in terms of its surface affinity as a function of the GDI or WCI. Importantly, the definitions of the two interfaces in terms of the excess proton charge defect are highly correlated and far from independent of one another, thus undermining the argument that one interface is superior to the other when describing the proton interface affinity. Moreover, the hydrated excess proton and its solvation shell significantly influence the location and local curvature of the WCI, making it difficult to disentangle the interfacial thermodynamics of the excess proton from the influence of that species on the instantaneous surface curvature. 

 

Past Research Highlights 

Center for Multiscale Theory and SimulationThe James Franck InstituteInstitute for Biophysical DynamicsComputation Institute