Publications
.
Understanding Dynamics in Coarse-Grained Models: I. Universal Excess Entropy Scaling Relationship. J. Chem. Phys. 2023 ;158(3):034103.
. Understanding Dynamics in Coarse-Grained Models: II. Coarse-Grained Diffusion Modeled Using Hard Sphere Theory. J. Chem. Phys. 2023 ;158(3):034104.
. Unveiling the catalytic mechanism of GTP hydrolysis in microtubules. Proc. Natl. Acad. Sci. U.S.A. 2023 ;120(27):e2305899120.
. Using classifiers to understand coarse-grained models and their fidelity with the underlying all-atom systems. J. Chem. Phys. 2023 ;158(23):234101.
. Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles. J. Chem. Theory Comput. 2023 ;19(14):4402–4413.
. Using Machine Learning to Greatly Accelerate Path Integral Ab Initio Molecular Dynamics. J. Chem. Theory Comput. 2022 ;18(2):599–604.
. Using Constrained Density Functional Theory to Track Proton Transfers and to Sample Their Associated Free Energy Surface. J. Chem. Theory Comput. 2021 ;17(9):5759–5765.
. Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability. J. Phys. Chem. Lett. 2019 ;10(16):4549–4557.
. Unusual Organization of I-BAR Proteins on Tubular and Vesicular Membranes. Biophys. J. 2019 ;117(3):553–562.
. Ultra-Coarse-Grained Liquid State Models with Implicit Hydrogen Bonding. J. Chem. Theory Comput. 2018 ;14(12):6159–6174.
. Ultra-Coarse-Grained Models Allow for an Accurate and Transferable Treatment of Interfacial Systems. J. Chem. Theory Comput. 2018 ;14(4):2180–2197.
. Understanding the Essential Proton Pumping Kinetic Gates and Decoupling Mutations in Cytochrome c Oxidase. Proc. Nat. Acad. Sci. USA . 2017 ;114.
. Unraveling the Mystery of ATP Hydrolysis in Actin Filaments. J. Am. Chem. Soc. . 2014 ;136(37):13053–13058.
. Understanding the Role of Amphipathic Helices in N-BAR Domain Driven Membrane Remodeling. Biophys. J. 2013 ;104:404-411.
. Unraveling the Role of the Protein Environment for [FeFe]-Hydrogenase Charge Transfer: A New Application of Coarse-Graining. J. Phys. Chem. B. 2013 ;17:4062−4071.
. Unusual Hydrophobic Interactions in Acidic Aqueous Solutions. J. Phys. Chem. B. 2009 ;113:7291-7297.
. Unique Elastic Properties of the Spectrin Tetramer as Revealed by Multiscale Coarse-Grained Modeling. Proc. Natl. Acad. Sci. USA. 2008 ;105:1204-1208.
. Unusual ‘Amphiphilic’ Association of Hydrated Protons in Strong Acid Solution. J. Am. Chem. Soc. 2008 ;130:3120-3126.
. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc Chem Res. 2007 ;40:1193-9.
. Unique Spatial Heterogeneity in Ionic Liquids. J Am Chem Soc. 2005 ;127:12192-3.
. A Unified Framework for Quantum Activated Rate Processes. II. The Nonadiabatic Limit. The Journal of Chemical Physics. 1997 ;106:1769-1779.
. A Unified Framework for Quantum Activated Rate Processes. I. General Theory. The Journal of Chemical Physics. 1996 ;105:6856-6870.
. On the Use of Feynman–Hibbs Effective Potentials to Calculate Quantum Mechanical Free Energies of Activation. The Journal of Chemical Physics. 1991 ;94:4095-4096.
.